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! ABSTRACT

{ The recent introduction of the theory of "viscosity solutions" of ./’:;;>\
nonlinear first-order partial differential equations - which we will call { cos, |
Hamilton-Jacobi equations or HJE's here - has stimulated a very strong Krsﬁcnb / N
development of the existence and uniqueness theory of HIJE's as well as a \‘L_,/’ -
revitalization and perfection of the theory concerning the interaction between b
HJE's and the diverse areas in which they arise. The areas of application ;'
include the calculus of variations, control theory and differential games. e

This paper is the first of a series by the authors concerning the
theoretical foundations of a corresponding program in infinite dimensional .-
spaces. The basic question of what the appropriate notion of a viscosity L
solution should be in an infinite dimensional space is answered in spaces with o
the Radon-Nikodym property by observing that the finite dimensional e
characterization may be used essentially unchanged. Technical difficulties s
which arise in attempting to work with this definition because bounded
continuous functions on balls in infinite dimensional spaces need not have
maxima are dispatched with the aid of the variational principle which states
that maxima do exist upon perturbation by an arbitrarily small linear
functional. pBasic estimates of maximum principle type are used to show that
solutions of HJE's in infinite dimensions are not only unique, but depend
continuously on the equation in a manner which is crucial for the

corresponding existence theory.
i

".

AMS (MOS) Subject Classifications: 35F30, 49C99 s
Key Words: Hamilton-Jacobi equations, equations in Banach spaces, uniqueness,
viscosity solutions, nonlinear first-order partial differential

equations, control theory.
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Introduction.
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This paper is the first of a seriegs devoted to the study of Hamilton-

»” A
4
O 1
)

Jacobi equations in infinite dimensional spaces. To pose a typical problem, ;id
we consider a (real) Banach space V, its dual space v', and solutions of an ii;
equation ' ;Ei
(HJ) H(x,u,Du) = 0 in § :%:
set in a subset  of V. In (HJ), H:V X B Xx v' + R is conpinuous and Du stands i{b

for the Fréchet derivative of u. Thus a classical solution u of (HJ) in Q is o,
a continuously (Fréchet) differentiable function u:R + R such that |
H(x,u(x),Du(x)) = 0 for x t Q. 1In particular, we will prove that under
appropriate conditions classical solutions of (HJ) are uniquely determined by
their boundary values. However, global clagsical solutions of fully nonlinear
first order partial differential equations are rare even in finite dimensional
spaces, and we introduce an appropriate weakened notion below for which the
uniqueness results are still valid.

There are various reasons to study (HJ). First of all, this is the form
of the basic partial differential equations satisfied by value functions
arising in deterministic control problems, deterministic differential games,

and the calculus of variations. A simple example is u(x) = |x| (the norm of x
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in V), which is nothing but the length of the shortest path from x to 0 and
which is a classical solution of |Du| = 1 in V\{0} provided the norm of V is
differentiable on V\{0}. For more complex control problems the reader may
consult Barbu and Da Prato [1], while relations between control problems, the
calculus of variations and Hamilton-Jacobi equations in finite dimensions are
recalled in P. L. Lions (13].

A second impetus for the current work lies in the simple desire to
contribute to the understanding of nonlinear partial differential equations in
infinite dimensional spaces. At stake (eventually) are not only the various
dynamic programming equations (also called Bellman, Hamilton-Jacobi-Bellman
and Isaacs equations, depending on the problem considered), but also the
equations associated with filtering or control of finite dimensional
stochastic systems under partial observation.

The remark concerning the differentiability of u(x) = |x| above brings
into focus the fact that geometrical properties of V will play a role in the
theory. 1In particular, questions related to the existence of an equivalent
norm on V which is differentiable on V\{0} are relevant to the theory in
infinite dimensions. However, in what follows, we partly obscure this fact by
including various assumptions of this sort that we need in the assumptions
concerning the Hamiltonian H. The outstanding explicit geometrical assumption
made on V in most of the presentation is that V has the Radon-Nikodym property
(i.e., "V is RN"). For example, reflexive spaces and separable dual spaces
are RN. The Radon~Nikodym property is important for us because if V is RN, ¢
is a bounded and lower semicontinuous real-valued function on a closed ball B
in V and € > 0, then there is an element x' of V' of norm at most € such that
¢+ x" attaing its minimum on B. This fact is proved in Ekeland and Lebourg

(10] under more severe restrictions on V (which are probably met in most
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applications of our results) and in full generality in Stegall [16]. See also
Bourgain [2].

Our main goal here will be to use this fact to show that the naive
extension of the notion of viscosity solutions to Banach spaces succeeds in
spaces with the Radon-Nikodym property. That is, the basic comparison (and
therefore uniqueness) theorems remain valid. Other papers in this series will
concern relations with control theory and differential games, existencs
theorems and uniqueness of other classes of unbounded viscosity solutions.
Indeed, existence in Hilbert (and more general spaces) is established in
M. G. Crandall and P. L. Lions [6]) by use of the relationship between
differential games and viscosity solutions.

In the next section we briefly give a definition of viscosity solutions

of (HJ) and prove some uniqueness results. The comparison results in infinite

dimensions will be given in a natural generality which is new even in finite
dimensions. 1In particular, we give the first complete formulation and proof
under assumptions which which are invariant under nice changes of the
independent variable. This generality and the basic outline of proof has been
evolving in the papers Crandall and Lions [4), [5], Crandall, Evans and Lions

(3], and Ishii [11], [12]. However, the proofs must be modified since bounded

continuous functions on closed balls in infinite dimensional spaces do not
have maxima in general. This difficulty is overcome here by use of the ‘rj

variational principle mentioned above. We would like to thank N. Ghoussoub

for bringing this result to our attention. This allowed us to simplify a
pfeliminary version of this paper which was based on a more complex notion of
viscosity solution than that given here and Ekeland's principle [9]. However,
not every Banach space is RN, so this more complex notion may prove

significant in later developments. It is therefore presented in an
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appendix. One can equally well prove unigueness results using it. However,
we ﬁabo choosen not to do so here because the theory (which is already getting
technical) becomes less attractive and it is not yet clear if there will be
either an accompanying existence theory or applications sufficient to justify
this degradation of the presentation.

Finally, let us recall that the basic theory of Hamilton-Jacobi equations
in finite dimensional spaces is now fairly well understood via the notion of
viscosity solutions (recalled below). This notion is given various equivalent
forms in M. G. Crandall and P. L. Lions [4], where the fundamental uniqueness
theorems were first proved. The uniqueness proofs below correspond to the
modified arguments given in M. G. Crandall, L. C. Evans and P. L. Lions [3) as
sharpened in the various papers mentioned above, and the relevance to control
theory was exhibited by P. L. Lions in [14] using the dynamic programming
principle. See M. G. Crandall and P. E. Souganidis (8] for a more extensive
resume and bibliography of recent work im finite dimensions.

The only previous work concerning viscosity solutions of Hamilton-Jacobi
equations in infinite dimensions of which we are aware is by R. Jensen (verbal
communication). Jensen, working in Hilbert spaces, uses the notion of a
viscosity solution on a closed set and compactness assumptions to obtain the

existence of extrema.
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Section I. Viscosity Solutions and Comparision Theorems
. Let {l be an open subset of the (real) Banach space V. We will denote the
value of p ¢ v at x €V by (p,x). If v:Q + R is continuous (i.e., v ¢ C(R))
and x ¢ 1, we define the superdifferential p*v(x) and the subdifferential
D v(x) of v at x just as in [3]:
D+v(x) = {p € V.:lim sup (v(y) - vix) - {(p,y - x))/ly - xl < 0}

yest
(1.1) y*x

D v(x) = {p € V'z lim inf (v(y) - v(ix) - (p,y - x)]/|y - x| >0 }
yef
y*x

We now define the notion of viscosity solutions.

Definition 1. Let u & C(R). Then u is a viscosity subsolution of (HJ) omn §
if

(1.2) H(x,u(x),p) € 0 for every x ¢ @ and p ¢ p*u(x).

Similarly, u is a viscosity supersolution of (HJ) on 1 {if

(1.3) H(x,u(x),p) > 0 for every x ¢ Q@ and p € D Vv(x).

Finally, u is a viscosity solution Q if it is both a viscosity subsolution anad

a viscosity super solution.

Since we are assuming that @ is open, the restriction y € @ in (1.1) is

Z; superfluous. However, (1.1) as it stands can be used whether or not f is

open, and the above definition generalizes at once. We will not use this

generality here, but see Jensen [13]. We will use (for example) the phrases

"solution of H € 0" and "subsolution of H = 0" interchangeably. The above

v L A .
. . .
. . .
-

definition is one of several possible alternatives. A more convenient form

« v ¥
. .
"

[ R AN

for analytical work is contained in the following obvious proposition.
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Propostion 1. Let u & C(R). Then u is a viscosity subsolution of (HJ) in 8

if and only if for every ¢ € Cc(R)

(1.4) H(y,u(y),D9(y)) € 0 at each local maximum y ¢ # of u - ¢ at
which ¢ is differentiable.

Similiarly, u is a viscosity supersolution of (HJ) when

(1.5) H(y,u(y),D¢(y)) » 0 at each local minimum y € @ of u - ¢ at which

¢ is differentiable.

Remarks 1. The corresponding result in finite dimensions states that the
‘proposition remains true if ¢ € C(fl) is replaced by ¢ € C‘(Q) and that one
may replace local extrema in the statement by strict local extrema. Here, for
example, when we say y € 1 is a strict local maximum of a function v, we
mean “very strict"™ - that is, there is a number a > 0 and a positive non- -
decreasing function g:(0,a] *+ (0,%) such that v(x) € v(y) = g(lx - yl) for

|x - y| € a. Of course, we may work with strict extrema in the general case.

Moreover, if the space V admits a function §:V * [0,») such that

Z(x)/|x| is bounded above and below by positive constants on V\{0} and §

is boundedly differentiable on V\{0}, then the proposition remains correct :%*
with everywhere differentiable ¢ € C(Q) and D¢ continuous at y in (1.4) Tff
and (1.5). This may be established in a manner similar to (e.g.) ii?
[3, Proposition 1.1].
o

Before we formulate some hypotheses on H, we need to make our strategy - :.~

A

which has already been implemented above - more explicit. We will state and

Y RS

prove one principle result concerning comparison and uniqueness of solutions

of (HJ) in all details. This proof will clearly illustrate how one may : 7
account for the infinite dimensional difficulties. We will then state further ;;5
results and, in particular, the corresponding result concerning comparison of - E;?
solutions of the related time-~dependent initial-value problem, without ;;ﬂ
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ké proof. The proofs not will be given because, by this time, a knowledgeable lfi
'ﬁ‘ . reader will be able to construct them in a straightforward way using the ff;
F‘ methods which have already been clearly illustrated here and in the 511
% ]
V‘ literature. Thus it is not appropriate for us to do this here. The same is Y
i 5.7
b.' : ‘u"}
P true for many other results. Hence we feel justified (here and later) to ;i

simply state when results "remain true in infinite dimensions" provided that

 f

we have verified the assertions for ourselves. For example, the results of
M. G. Crandall and P. L. Lions [5]) and H. Ishii [12) concerning moduli of

continuity remain true in Hilbert spaces. By contrast, assertions concerning 5“ﬁ

S

existence, especially when the finite dimensional proofs employ compactness

Py

Eé arguments, cannot usually be verified without considerable work ([6]). We

* will return to the question of moduli of continuity in [6]), where it plays an

'y

essential role.

We turn to formulating the conditions on H we will use. First of all,

Sy

one does not expect boundary problems for (HJ) to have unique solutions unless -7*

H(x,u,p) is monotone in u, and it is convenient to emphasize this monotonicity J
by considering problems of the form .

[

(HJ)® u + H(x,u,Du) = 0. ~—

Of course, (HJ) may be transformed into a problem of the form (HJ)' (with a

"new H") in a variety of ways. We will be imposing conditions on H in (HJ)'. f;;

These conditions will involve two auxilary functions 4:V x Vv + [0,®] and -

v:V + [0,®). These functions are to satisfy a collection of conditions we 5;;

will simply call (C). 1In the statement of these conditions and below, l | is }:;

used to denote the norm of V as well as the corresponding dual norm on v’ ana - Blais

the absolute vaue on R, If x, y ¢ V, then L(x,y) denotes the line segment

‘e

<
o
] -.l

joining them. It may be useful to the reader to keep in mind the case in ' 133

LA

which V is Hilbert, d(x,y) = |x = y| and v(x) = |x| while reading further. =

¥

* o 0
Sttt
o’
[ 3
L

...
L )
]
~
]

.........

-------- oty _‘.',.-‘
o % N
,'.-,_f :l\.‘.




A Rt RO O e ChhyC ey - AUCRURRCHICRA I SR ) S p i

The conditions (C) are:

(c) let y € V. The nonnegative function x + d(x,y) is Fréchet
differentiable at every point except y and the derivative is denoted
by d,(x,y). Similary, y *+ d(x,y) is differentiable except at x and
its derivative is dy(x,y). The function Vv is bounded on boundeA
sets. Moveover, there are constants K,k > 0 such that the
nonnegative function v is differentiable on {x € V: v(x) > K },

(1.6) la (x,y)]|, |dy(x,y)|, |[pv(x)| < K

whenever the quantities on the left are defined,

(1.7) lim inf S5 5
xfoe T 77
and -
(1.8) k|x - y| € Alx,y) € K|x - y| for x, y € V.

We continue. A function m:[0,®) + [0,®) will be called a modulus if it
if it is continuous, nondecreasing, nonnegative, subadditive and satisfies

m(0) = 0. We will use m, my, etc., to denote such functions. We will also

say a function o¢:[0,®) x [0,®) + [0,~) is a local modulus if r * o(r,R) is a

modulus for each R » 0 and o0(r,R) is continuous and nondecreasing in both

variables. (The words indicate that o(r,R) is a modulus in r when something

——y
A f
Ce e

else is "local”, i.e. bounded by R). BR(x) denotes the closed ball of center
x and radius R in V and intBgp(x) is its interior. Assuming that conditions

(C) hold, the properties of H:V X R x v' + R that we will employ are:

There is a local modulus ¢ such that
(HO) IH(xlrIP) = H(xlth)l < O(Ip = qIIR) .

for x €V, p, ¢ € V' and r € R satisfying x|, |p|, |a| < R.

RS A e S e e AN o AAe b ARSI ACIL MRS ST OIS I At BRI S S S S S T A
- PR T . .
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]
=
(H1) For each (x,p) € V x V', r + H(x,r,p) is nondecreasing. ;?ﬂ
.:-’_‘.:4
=
There is a local modulus Oy such that —
%
(H2) H{x,x,p) - H(x,r,p + ADV(x}) € UH(X,|p| + ) iy
A
whenever 0 € A , (x,p) € & x V*, and Vv(x) > K. ::.;.j
and -
‘.'.4
There is a modulus my such that N
(H3) H(y,r,~Ad (x,y)) = H(x,r,Ady(x,y)) € my(Ad(x,y) + d(x,y)) -
r ‘
for all x, y € Q with x ¢y and L(x,y) C R, r ¢ R and A > 0. R
9
We formulate the following comparison result for (HJ)' in such a wvay as N
to exhibit an appropriate continuity of the solution in the equation. This is -
ne
useful for existence proofs ((6]), a fact which justifies the added complexity j‘:
of the statement. In the theorem, fi is the closure of @ and 9Q is its :ﬂf

boundary. We remind the reader that everywhere below K, k are the constants

of conditions (C).

Theorem 1. Let H, H ¢ C(V x R x V) and the conditions (C) hold. Let each of

H and ﬁ satisfy (HO) and H satisfy (H1), (H2) and (H3). Let u, v € c(5} be

viscosity solutions of
(1.9) u + H(x,u,Du) € 0 and 0 < v + H(x,v,Dv) in Q.
Let there be a modulus m such that
(1.10) Julx) = uly)| + |v(x) = v(y)| € m(|x~y|) if L(x,y) C Q. ]
)
If Q ¥ Vv, then for €, a > 0 satisfying }}f
oY
€ < (ka)2)/(m(a) + 1) .
we have %;i
+ 1/2 o
u(x) - v(x) € sup (u - v) + 2m(a) + mH(Zm(a) + (em(a)) ) + ?uﬂ
1e] R
(1.11) )
a » '.'.;
sup{(ﬂ(z.r.p)-ﬂ(z,r,p))+:(z,r,p) € QxRxV and |p| < Zx(m(a)/e)'/z} S
'.~.'.J
o
-9= :f‘
S
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for x € Q. If Q@ = V, then (1.11) holds with the terms sup(u - v)+- 0. + o
- (1Y) S
2m(a) replaced by 0. In either case, if H=H and u € v on 3, then

u € v in Q. v

Remarks 2: We pause and attempt to illuminate this result a bit, as it is ;;k:

packed with interesting technical subtleties in addition to the infinite L

dimensional formulation. The uniqueness asserted in the theorem was proved in

the case V = RY, d(x,y) = |x = y|, and u and v uniformly continuous in

Crandall and Lions [5]), who also assumed that (H1) was replaced by the

stronger condition of uniform continuity of H(x,r,p) in (x,p) for bounded p.

It was remarked in (5] that a formulation using something like "d" of

condition (C) would yield a class of problems invariant under nice changes of

the independent variables. Subsequently, Ishii (12] improved this result by ’

coupling the case V(x) = Ix - xol for some xg with d(x,y) = Ix - y|,

eliminating the restrictive uniform continuity assumption on H mentioned

above. Ishii also chose some comparison functions which improved the

presentation a bit, and we use analogues here. CE
An obviously interesting test class with respect to the generality of the

hypotheses is the linear problem in which H(x,p) = (p,b(x)) where b:V + V.

If b is bounded on bounded sets, then (HO) is satisfied. The requirement (H1)

is clearly satisfied. If V is Hilbert and d(x,y) = Ix - yl, the requirement

(H3) amounts to asking that there be a constant c such that x *+ b(x) + cx is "

"monotone” in the sense of Minty, Browder, etc.. Further specializing to

i)
5

AT
PSSO T A

V=R, V(x) = |x - xol, (H3) amounts to asking that b{(x) be bounded below on

L SR
P
#

x > 0 and above on x < 0. Let ag = 0, a; * aj_q = aj.4 + i and a_; = ay for
i > 0. It is easy to construct an even function v satisfying the requirements
of (C) with Dv supported on I; for i odd and an odd function b with support in

Y for i even with b' bounded below but b unbounded below on (0,®). Then H

-10-
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satisfies (H2) with this v and d(x,y) = |x - y|, but it does not satisfy
Igshii's condition. The situation is rather subtle.

Let us subject a problem u + H(x,u,Du) = 0, where v, d satisfy the
conditions (C) and H satisfies (HO) - (H3), to a change of independent

variable x = G(z) where G:V + V and its inverse are everywhere defined,

Lipschitz continuous and continucusly differentiable diffeomorphisms. Denote

= "~
'.‘ '- l."';'

the resulting equation for v(z) = u(G(z)) by v(z) + F(z,v(z),D,v(z)) = 0. We

will not write the formulas, but the reader can verify that the new

L

l! Hamiltonian satisfies the condtions of the theorem with the "transformed" d
and v (let's call them d; and Vg) given by dg(z,w) = d(G(2),G(w)) and vg(z) =
.£ v(G(z)). In particular, if d(x,y) = |x = y|, then dg(z,w) = [6(z) - c(w)].
ii : This provides a wide class of examples.

L§ Finally, we remark that explicit error estimates in the spirit of Theorem

1 (but in finite dimensions and a different technical setting) appeared in
Souganidis [15], and it was Ishii [12] who pointed out that one only needed
uniform continuity of u and v on line segments in Q in the gense of (1.10)
rather than on £ itself in the arquments, a remark which clarified the
situation a bit.

Proof of Theorem 1: Let us first observe that the final assertion of the

theorem follows immediately upon letting € + 0 and then a + 0 in (1.11). We
give the proof of (1.11) for the case Q # V (the alternative being the simpler

case). Without loss of generality, we assume that gap(u -vt ¢w,

Let
(1.12) p(x) = distance(x,9).
One easily deduces from (1.8) that if L(x,y) C @, then

(1.13) u(x) = v(y) < sup(u - )t 4 m(min(p(x),p(y))) + m(|x = y|)

and, in particular,




":f':ﬂ

u(x) - vix) < guplu - vt + ap(x)) Lo

for x € . Since m {being a modulus) and p have at most linear growth, we . E?;?
2

"' o 4

conclude that there are constants A, B for which g

v

el

(1.14) u(x) - v(x) < A + B|x| for x € Q. ?ﬁf

, i

We will use an auxiliary function { ¢ C (R) satisfying v y

(1.15) Z(r) =0 for r< 1, f(r) =r-2forr>3and 0< ' < 1, o]

Let a, €, B, R > 0 and consider the function :.‘

aix,y)? o

(1.16) o(x,y) = ulx) = v(y) - (Z=— + Bg(vix) - R))

on the sget 'ﬂlj
Ao

(1.17) Af(a) = {(x,y) ¢ & x Q: p(x),p(y) > a and |x - y| < a}. b

Roughly speaking, the result will be obtained by considering ¢ near its i;j%

maximum. We claim that if ' R

2 P
(1.18) 8k > B, € € (ka)“/(m(a) + 1) and R > K L
where B is from (1.14), then 2

d(x,y) < sup (u - v)* + 2m(a) +m (2m(a) + (em(a))vz)wa(ﬁ,zxm(a)*ﬂ) +
a0

(1.19) [:

sup{(ﬂ(z,r:p)-ﬂ(z,r,p))+:(z,r,p) e axrxv” and |p| < (m(a)/e)1/2x} L

on A(a). Let us show that the claim implies the theorem and then prove the

claim. Since u(x) - v(x) = &(x,x) if v(x) < R, we may let R + ® to see that a 2{3
bound on ¢ on A(a) which is independent of large R is also a bound on E;i
u(x) - v(x) for p(x) > a. Since we also have (1.13), u - v is therefore ;;5
bounded if ¢ is bounded. But then we are free to choose B as small as desired :z;
and the estimate on u - v arising from letting 8 + 0 in the bound on ¢ iz
together with (1.13) yields the theorem. 21:23:1
[}
-12= ;;E




.....................................

It remains to prove the claim. It clearly suffices to show that if

(1.20) sup ¢ > sup(u - v)* + 2m(a) e

Ma)y o -

then (1.19) holds. To this end, choose a sequence (x,,y,) ¢ A(a), i(;

n=1%,2,..., such that f:;

.'_:J‘

(1.21) ®(x_,y,) increases to 2?5)0 and &(x_,y ) > ®(x;,x,). o)

S

It follows from (1.7), (1.8), (1.14), the inequality u(x) = v(y) € u(x) - v(x) }}ﬁ

+ m(a) on A(a), and Bk > C that ®(x,y) € =1 if [x| + |y| is large, and we iﬁj

conclude that -

v

(1.22) (%,,¥n) is bounded.

R

Moreover, it follows from (1.13) and (1.16) that }}j

*(x,y) € guplu - v)* + m(min(p(x),p(y))) + m(a), 8

-

S

o]

so, from (1.20), (1.21) we conclude that there is a Y > 0 such that o]

]

(1.23) Plxy), Plyy) > a + Y for large n. oo

Next, since -

2 2 ]

®(x,y) - ®x,x) = v(x) = v(y) = 215%!1_ <m(|x - y|) - EL!:ZL_ ot

O

{'..c:

on A(a) it follows from (1.21) that A

2 Vi

(1.24) alx,,y,)* € eml|x, = yp|) < em(a). ——
Using (1.8) we 'see also that (1.24) implies |xn - ynl < (en(a))1/2/x and so,

using (1.18), =

(1.25) |x, = yu! < atm(a)/(m(a) + 112 < a. .

S

The upshot of these considerations is that we can assume that there is a Yy > 0 :q

such that ;:i

S

(1.26) s, = {(x,y) €V x viix - a5,|2 + |y - ynlz < v2} C A(a) :.,11

for all n. Put :ff

e (1.27) §p= sup @ - &(x ,y) o

X A(a) !

and consider —

o

-13= o
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(1.28) ¥Y(x,y) = &(x,y) - (36n/(ky) Ya(x,x,)° + d(y,y,)*) S
f: on S,. We assume that §, > 0 for all n, the other possibility being ﬁ%f
ﬂ congiderably simpler. Using (1.8), (1.27), (1.28), we see that
W
A (1.29) ¥(x,¥) < ¥(xp,y,) - 26, S
ﬂi on 3S,. It follows that if P:S, * R varies by less than 26n over S, and ¥ + P ﬁt
. has a maximum point with respect to S, then this point must be interior to
3 S, According to Stegall [16], there are elements Pns 4 € v’ satisfying .
(1.30) (ppl? + lay12) "2 < 8 sy -
such that ¥(x,y) = (pp,x) - (q,,y) atttains its maximum over S, at some point Y
(;,;), which must be an interior point by the above considerations. Now, ]f
according to the fact that u and v satisfy (1.9) in the viscosity sense, i}
Proposition 1, ; is a local maximum of x + ¥(x,y), y is a local minimum of y + .
Y(x,y) and the various assumptions, we conclude that
u(x) + H(x,u(x),pqc + Bq + 68,4.) < 0,
(1.31) . aa =
v(y) + H(y,v(y),poe + 85) > 0, -
where :it
Pie = 2d(x,Y)dx(x:y)/€: P = -2d(X1Y)dy(XJY)/e' .::::
~ -~ *
q = §'(v(x) = R)DV(x), e
(1.32) . R . . il
O4n = Pn + Knd(x,Xp)dy(x,Xp), 8oy = = qy ~ Kyd(y,yy)dy(y,yy), N
K, = 68_/(kY)?, :
where the indexing is choosen to show only key dependencies for what -
follows. The reader will notice that we have written expressions above which ?k
are not always defined, e.qg. dx(x,y) and Dv(x). However, in the event they *
may not be defined, e. g. if x = y or v(;) < K, they have coefficients which R
vanish, e.g. d(x,;) and C'(V(;) = R). These products are defined to be 0. ﬂ;k
We next write several chains of inequalities and then explain how each - jf%
arises. We have: -
.j:
-14-
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O .yy) = Yixg,y,) € ¥(x,¥) € ulx) = viy) < s
(1.33) :’_:t:.
< a(;lV(;)lng, - H(;lu(;’l Pie t 8q) + €ne ,

where ;k
(1.34) €En*0asn+ = ::i
Moreover o
(Y, v(¥),Pge) = BIX,u(x),pqe + Bq) < .
H(y,v(y),pye) = Hly,v(y),pye) + -“
A A ~ ~ r"j
H(Ylu(X)rPZE) - H(x,u(x):p,e) :f?
(1.35) .. . i
+ H(x,u(x),pqe) = H(x,u(x),pqe + Bq) € 7
< gsup{(H(x,r,p) - H(x,r,p)):(x,r,p) ¢ & x R X v, lpl < |P2e|} + Lo
my(2d(x,y)%/€ + d(x,y)) + oy(B,K2d(x,y)/€ + B), i
133 and {;u
(1.36) atx,y) € Alxg,y,) + 2Ky < (em(a))V/2 + 2my.
;ﬁ All of (1.33) but the final inequality follows at once from the definitions

and the nonnegativity of the various functions. The last inequality in (1.33)
with the relation (1.34) comes from (1.31), the assumption that H and ﬁ
satisfy (HO) (and so are uniformly continuous in p when x and p are bounded),
:i the fact that (;,;) lies in a bounded set (independent of n) by (1.22), py.,

i = 1,2 are bounded for fixed € by (1.32) and (1.6), while |Bin| + 0ag n+ @

by §, + 0 and (1.30) and (1.32). The first inequality in (1.35) is valid

because of the monotonicity (H2) and u(;) - v(x) » 0 (by (1.33)), which imply

that H(y,v(y),p) € H(y,u(x),p) for all p. The second inequality arises in the :”1
2; ‘ obvious way from (H2) and (H3) together with (1.32), (1.6) and (1.15).
:::j . Finally, (1.36) arises from (x,y) ¢ S, and the Lipschitz continuity of 4q
> implied by (1.6). " ‘
A Y
)
o 5
A )
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Prom (1.32), (1.36) and (1.6) we further deduce that

(1.37) lpsel € 2K((em(a)) V2 + xy)/e.

Now we use (1.33) = (1.37) in an obvious way and let n + = and then Yy + 0

(as we may do) to conclude that
iizf(xn,yn)<lnp{(ﬁ(x,r,p)-ﬂ(X.r.p)):(x.z,p)tOXva.,|p|<2x(l(a)/e)1/2}
+ my(2m(a) + (em(a))V/2) + o,(8,2km(a) + B)

and this proves the claim,
Remark: A key ingredient in the above estimates was (1.24), which allowed us
to estimate d(xn,yn)2 by em(a). In fact, this is far from sharp. Using (1.8)
ve found |x, - y,| < (em(a))V/2/k, which may in turn be used in (1.24) to find
d(xn.yn)z < Gm((em(a))1/2/k) and then the process can be iterated arbitrarily
often. Ishii [12] uses one iteration in his proof of uniqueness. From the
point of view of uniqueness, the question is not serious. From the point of
view of error estimates, one might be interested in more precision. For '
example, if m(a) = a® where 0 < a < 1, the best.estimate is of the form

d(xn.yn)z < cc(1/(2-9)) | an4 this allows one to sharpen the result above.

We next formulate a typical result for a Cauchy problem. Thus we

consider two inequations

(1.38) up + Hix,t,u,Du) < 0 in @ x (0,T),
and
(1.39) vy + H(x,£,v,0v) > 0 in @ x (0,T)

where T > 0. Of course, the notion of a viscosity solutions of (1.38), (1.39)

is contained in the notion for (HJ) - one just regards them as equations of

-.'

-

-l
Ie®
[

;

the form (HJ) in the subset & x (0,T) of the space V X R. The conditions we

will impose on the Hamiltonians are quite analogous to those in the stationary

AP

case. Namely, we ask for condions (C) and
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There is a local modulus 0 such that

LAk A an s o

. (HO)* |n(x,t,x,p) - H(x,t,r,q)| € o(]p = q|:R)

for (x,t,x) ¢ Vx [0,T) X R, p, q € V' satisfying |x|, |p|, la| < R.

There is a A > 0 such that for (x,t,p) € V x [0,T] x V',

P (H1)*
r + H(x,r,p) + Ar is nondecreasing.
g
There is a local modulus oy such that
_ (H2)* H(x,t,r,p) - H(x,t,r,p + ADV(x)) € ox(},|p| + X)

whenever 0 € A, (x,t,r,p) € Vv x {0,T] x R x v', and v(x) > K.

i and
3

There is a modulus my such that

(H3)* H(y,t,r,-kdy(x,y)) - H(x,t,r,Ad,(x,y)) € -H(Ad(x,y) + d(x,y))
for all x, y €¢ V with x # y, (t,r) € (0,T] x Rand A > 0.

We have:
Theorem 2. Let u,v t (R x [0,T]), H, B ¢ C(V x [0,T] x R x V") and (1.38),
(1.39) hold in the viscosity sense. Assume that H and ﬁ satisfy (HO)*, while
H satisfies (H1)* - (H3)*. 1In addition to the conditions (C), assume that
a,(x,y) is continuous on {(x,y) € VxV: x¢¥yl}. Letmbea modulus such
that
(1.40) |utx,t) = uly,t)| + |vix,t) = v(y,t)| € m(|x = y|) if L(x,y) €
and 0 € t € T and also

%%g u(x,t)=-v(x,t) = u(x,0)-v(x,0) uniformly for x in bounded subsets of 5:

Then there is a constant C depending only on A, k, K and T such that
ulx,t) - v(x,t) € c((sup {(ulx,t) - v(x,t))*:(x,t) €30 x (0,7) VU R x {0}} +

+ 2m(a) + my(C(m(a) + (em(a))V/2) +
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lup{(ﬁtx,t.r.p)-utx.t.r.p))*x(x.t.r.p) € ax[0,TIxmxv’ and |p| < c(m(a)/ze)V/?}
for 0 < € < a2/C(m(a) + 1).

Remarks on the Proof: The reader will be able to construct the proof using

existing ingredients - in particular, the proofs of Theorem 1 and Ishii

-
.,
.
"
-
..

v
..

{12, Theorem 1(i)] together with the lemma:

3
-
¢

3
=

eSS

lemma 1. Let H and ﬁ be continuous and 4, satisfy the continuity requirement of
Theorem 2. Let u and v be viscosity solutions of (1.38) and (1.39) on
Qx [0,T]. Then z(x,y,t) = u(x,t) - v(y,t) is a viscosity solution of

z, + H(x,t,u(x,t),D,z) - a(y,t,v(y.t),-Dyz) <0

o on 8 x & x (0,7).

The lemma may be proved as in [5, Lemma 2] using x + d(x,y)2 as a - +if
continucusly differentiable function with a strict minimum at x = y. This was iii
the only reason to impose the extra condition on 4 and one could assume instead ii)

e
the existence of another function with the property. 1t may well be that this ET?T
is not necessary. i;f
Remark on the Statement: Let us call the term involving (i = H) in the estimate ng
g{t) (with € and a fixed). Formally applying Theorem 2 to u and v + ];g(l)d- R ;::
which satisfies a suitable inequation, an estimate arises which amounts to EE;S
replacing g by j;q(s)ds in the assertion. Some technical considerations E?Ea
concerning regularity in t need to be disposed of (by hypotheses or argument) to ‘51
make this precise. jEZJ

Let us end this section by recalling that the original uniqueness results ::j
in finite dimensions ([4]) were formulated so as to display a trade off between ;”1
assumptions on the Hamiltonian H and regularity properties of the solutions u
and remarking that the same results are valid in infinite dimensions. 1In o
particular, we consider the following strong form of (H3) %ﬁ“

-~
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There is a local modulus 3 such that

(H3), u(y,r,-ldy(x,y)) = H(x,r,Ad,(x,y)) € s(d(x,y),xd)

for all x,y € Hwith L(x,y) C R and x # y, r€éR and A 2 0,
as well as the weak form

There is a local modulus p such that
(13),, B(yor,=Ady(x,y)) = Hx,z,My(x,3)) € 5(d(x,3),2)

for all x,y € H with x ¥ y, z¢R and A > 0.

I1f H satisfies and the conditions of Theorem 1 with (1{3). instead of (H3), then
all continuous and bounded viscosity solutions u and v of
(1.40) u + H(x,u,Du) < 0 and 0 € v + H(x,v,Dv) on V
satisfy u € v. On the other hand, if H merely satisfies the conditions of
Theccem 1 with (H3),, in place of (H3) and u and v are Lipschitz continuous
viscosity solutions of (1.40), then u € v. Analogous remarks hold for the
Cauchy problem.

Let us conclude by remarking that the Cauchy problem is distinguished from
the pure boundary problem in two respects - the linearity of the equation in u,,
which allows a more general dependence of H on t, and the fact that in the
Cauchy problem the estimate on u - v does not involve the part t = T of the
boundary of E x [0,T]. Of course, while we did not do so here,
one can identify irrelevant parts of the boundary in general -~ see, e.g.,

Crandall and Newcombe (7].
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Appendix: Viscosity Solutions Without the Radon-Nikodym Property -

In this appendix we will define a notion of viscosity solution of (KHJ)
which is useful to study such equations in spaces which are not RN. Since the
definition appears to be more restrictive in the case in which V is RN, we will
call this type of solution a "strict"™ viscosity solution.

To begin, we generalize the notion of sub and superdifferentials to the

‘e 8 10 .8 B ¢ e
3 ORI e

notion of €-gsub~- and superdifferentials (see Ekeland and Lebourg (9] and Ekeland

- (8]). Let R CV be open, v € C(Q), x € 2, € > 0 and set

ptvix) = {p e v': 1im gup XL = Vi) = (p,y = X) ¢ ¢}
Yy - x
y*rx

(A.1) vyes -
N
Dov(x) = {p e v': lim ine YY) = vlX) = lpoy = X) , _ ¢},

€ ly = x| *
b 4 rx [ [ I
o
D;v(x), Dcv(x) are closed and convex (possibly empty) sets. It is clear Lo
that v is differentiable at x if and only if both D*v(x) and D"v(x) are e
nonempty, and then {Dv(x)} = p*v(x) = D"v(x). The analogous statement here is 7?:
OOUY
- AN
that v is differentiable at x if and only if D;v(x) and D.v(x) are nonempty for ;ﬁq
SR
every € > 0. ASK

We again consider the Hamilton-Jacobi equation

R ‘
s’ o .
] i
. . . e

(HI) H(x,u,0u) = 0 in Q. R

.o

SN

Definition 2: A continuous function u € C(fl) is a strict viscosity subsolution ?}

of (HJ) in Q if for each € > 0, x ¢  and p € D;u(x) T

(A.2) inf{H(x,u(x),p + q): |g| < €} < 0. ’:;'.j

Similarly, u is a strict viscosity supersolution if ;:a

(A.3) sup{H(x,u(x),p + @): |q| € €} >0 h—

for all x ¢ Q and p € D;u(x). ::i

- e

it

e
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It is easy to see that p ¢ D:u(y) exactly when there is a continuous

s function ¢ which is differentiable at y and such that D¢(y) = p and x * u(x) =
. ¢(x) = €|x = y| has a local maximum at y. Thus we make contact with Ekeland's
L 4
principle (([8]), which may be used to replace Stegall's theorem in proofs of
k.
uniqueness. .-_'_‘..'
It is clear that D'u(x) = ﬂ{D;u(x): € >0}, etcs, and therefore that i??
strict viscosity solutions are viscosity solutions. The converse is almost -
LR
certainly false in general, although it will be true with restraints of H and };J
V. It is true in finite dimensions. ffﬁ
Proposition: Let H be continuocus and V = R with the Euclidean norm. Then u is -
o i
?. a viscosity solution of H € 0 (H » 0) if and only if it is a strict viscosity ;_3
g solution of H € 0 (respectively, H » 0). i?f
.4'_4
i: Proof: One direction is trivial as remarked above. We show that if u is a -
T - 9
. viscosity solution of H(x,u,Du) €< 0 then it is also a strict viscosity ]
i: solution. To this end, let € > 0 and p ¢ D:u(y). Then there is a function ¢ ;ff
ii differentiable at y such that DP(y) = p and u(x) - ¢(x) - €|y - x| has a minumum e
at y. Because of the special choice of V we may assume that in fact ¢ is :i:
continucusly differentiable and the maximum is strict. Then the function u(x) - :i:
)
@(x) = €(|x ~ y|2 + 6)1/2 w111 have a maximum at some point x5 which tends to y g
~
as § + 0. Since u is a viscosity subsolution we also have 'Iﬂ
H(xg,u(xg),DP(xg) + q5) < 0 f%
where q5 = €(xg = y)/(|xg - y|2 + 6)1/2 nas norm less than €. Since DP(xg) * p, v
it follows that inf {H(y,u(y),p + q@): |q] € € } € 0, and the result is proved. i;}
The above proof can be adapted to the case in which V is RN, the norm of V ﬁ%:
is continuously differentiable on V\{0} and H has the property that if x,, x € e
:1 ' V, In,r € Rand q,, Pps P ¢ v' satisfy x, * X, p, * P, Iy, * r and |qn| € €, then lfﬂ
. =
e e
N < . O
) R
vy
=2 =
;:N -21' ‘ .~'
n -
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lim inf H(x 'TooPpt qn) > inf H(x,r,p + q)
nee lal<e

(A.4) and

lim sup H(x ,r_ ,p + q ) € sup H(x,r,p +q) .
oo n"- n’en qn 'q <€

It is clear that many perturbations of the notion of a strict solution are
possible. For example, rather than require that (A.2) and (A.3) hold for all
€ > 0, one could require it for small € or make the range depend on x, etc. We

will not pursue this issue here.
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